This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elznn | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
| 2 | 3orrot | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN \/ N = 0 ) ) |
|
| 3 | 3orass | |- ( ( N e. NN \/ -u N e. NN \/ N = 0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
|
| 4 | 2 3 | bitri | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
| 5 | elnn0 | |- ( -u N e. NN0 <-> ( -u N e. NN \/ -u N = 0 ) ) |
|
| 6 | recn | |- ( N e. RR -> N e. CC ) |
|
| 7 | 6 | negeq0d | |- ( N e. RR -> ( N = 0 <-> -u N = 0 ) ) |
| 8 | 7 | orbi2d | |- ( N e. RR -> ( ( -u N e. NN \/ N = 0 ) <-> ( -u N e. NN \/ -u N = 0 ) ) ) |
| 9 | 5 8 | bitr4id | |- ( N e. RR -> ( -u N e. NN0 <-> ( -u N e. NN \/ N = 0 ) ) ) |
| 10 | 9 | orbi2d | |- ( N e. RR -> ( ( N e. NN \/ -u N e. NN0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
| 11 | 4 10 | bitr4id | |- ( N e. RR -> ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN0 ) ) ) |
| 12 | 11 | pm5.32i | |- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) |
| 13 | 1 12 | bitri | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) |