This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zringsub.p | |- .- = ( -g ` ZZring ) |
|
| Assertion | zringsub | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X .- Y ) = ( X - Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringsub.p | |- .- = ( -g ` ZZring ) |
|
| 2 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 3 | zaddcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
|
| 4 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 5 | 0z | |- 0 e. ZZ |
|
| 6 | 2 3 4 5 | cnsubglem | |- ZZ e. ( SubGrp ` CCfld ) |
| 7 | cnfldsub | |- - = ( -g ` CCfld ) |
|
| 8 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 9 | 7 8 1 | subgsub | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |
| 10 | 6 9 | mp3an1 | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |
| 11 | 10 | eqcomd | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X .- Y ) = ( X - Y ) ) |