This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhval.l | |- L = ( ZRHom ` R ) |
|
| zrhval2.m | |- .x. = ( .g ` R ) |
||
| zrhval2.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | zrhmulg | |- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N .x. .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | |- L = ( ZRHom ` R ) |
|
| 2 | zrhval2.m | |- .x. = ( .g ` R ) |
|
| 3 | zrhval2.1 | |- .1. = ( 1r ` R ) |
|
| 4 | 1 2 3 | zrhval2 | |- ( R e. Ring -> L = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
| 5 | 4 | fveq1d | |- ( R e. Ring -> ( L ` N ) = ( ( n e. ZZ |-> ( n .x. .1. ) ) ` N ) ) |
| 6 | oveq1 | |- ( n = N -> ( n .x. .1. ) = ( N .x. .1. ) ) |
|
| 7 | eqid | |- ( n e. ZZ |-> ( n .x. .1. ) ) = ( n e. ZZ |-> ( n .x. .1. ) ) |
|
| 8 | ovex | |- ( N .x. .1. ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( N e. ZZ -> ( ( n e. ZZ |-> ( n .x. .1. ) ) ` N ) = ( N .x. .1. ) ) |
| 10 | 5 9 | sylan9eq | |- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N .x. .1. ) ) |