This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zrevaddcl | |- ( N e. ZZ -> ( ( M e. CC /\ ( M + N ) e. ZZ ) <-> M e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | pncan | |- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - N ) = M ) |
|
| 3 | 1 2 | sylan2 | |- ( ( M e. CC /\ N e. ZZ ) -> ( ( M + N ) - N ) = M ) |
| 4 | 3 | ancoms | |- ( ( N e. ZZ /\ M e. CC ) -> ( ( M + N ) - N ) = M ) |
| 5 | 4 | adantr | |- ( ( ( N e. ZZ /\ M e. CC ) /\ ( M + N ) e. ZZ ) -> ( ( M + N ) - N ) = M ) |
| 6 | zsubcl | |- ( ( ( M + N ) e. ZZ /\ N e. ZZ ) -> ( ( M + N ) - N ) e. ZZ ) |
|
| 7 | 6 | ancoms | |- ( ( N e. ZZ /\ ( M + N ) e. ZZ ) -> ( ( M + N ) - N ) e. ZZ ) |
| 8 | 7 | adantlr | |- ( ( ( N e. ZZ /\ M e. CC ) /\ ( M + N ) e. ZZ ) -> ( ( M + N ) - N ) e. ZZ ) |
| 9 | 5 8 | eqeltrrd | |- ( ( ( N e. ZZ /\ M e. CC ) /\ ( M + N ) e. ZZ ) -> M e. ZZ ) |
| 10 | 9 | ex | |- ( ( N e. ZZ /\ M e. CC ) -> ( ( M + N ) e. ZZ -> M e. ZZ ) ) |
| 11 | zaddcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
|
| 12 | 11 | expcom | |- ( N e. ZZ -> ( M e. ZZ -> ( M + N ) e. ZZ ) ) |
| 13 | 12 | adantr | |- ( ( N e. ZZ /\ M e. CC ) -> ( M e. ZZ -> ( M + N ) e. ZZ ) ) |
| 14 | 10 13 | impbid | |- ( ( N e. ZZ /\ M e. CC ) -> ( ( M + N ) e. ZZ <-> M e. ZZ ) ) |
| 15 | 14 | pm5.32da | |- ( N e. ZZ -> ( ( M e. CC /\ ( M + N ) e. ZZ ) <-> ( M e. CC /\ M e. ZZ ) ) ) |
| 16 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 17 | 16 | pm4.71ri | |- ( M e. ZZ <-> ( M e. CC /\ M e. ZZ ) ) |
| 18 | 15 17 | bitr4di | |- ( N e. ZZ -> ( ( M e. CC /\ ( M + N ) e. ZZ ) <-> M e. ZZ ) ) |