This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zrevaddcl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) ↔ 𝑀 ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 2 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 4 | 3 | ancoms | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 6 | zsubcl | ⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) ∈ ℤ ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) ∈ ℤ ) |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) ∈ ℤ ) |
| 9 | 5 8 | eqeltrrd | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 10 | 9 | ex | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) ∈ ℤ → 𝑀 ∈ ℤ ) ) |
| 11 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) | |
| 12 | 11 | expcom | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) → ( 𝑀 ∈ ℤ → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
| 14 | 10 13 | impbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) ∈ ℤ ↔ 𝑀 ∈ ℤ ) ) |
| 15 | 14 | pm5.32da | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) ↔ ( 𝑀 ∈ ℂ ∧ 𝑀 ∈ ℤ ) ) ) |
| 16 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 17 | 16 | pm4.71ri | ⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℂ ∧ 𝑀 ∈ ℤ ) ) |
| 18 | 15 17 | bitr4di | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) ↔ 𝑀 ∈ ℤ ) ) |