This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgn0.1 | |- Z = ( ZZ>= ` M ) |
|
| ntrivcvgn0.2 | |- ( ph -> M e. ZZ ) |
||
| ntrivcvgn0.3 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
||
| ntrivcvgn0.4 | |- ( ph -> X =/= 0 ) |
||
| Assertion | ntrivcvgn0 | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | ntrivcvgn0.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | ntrivcvgn0.3 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
|
| 4 | ntrivcvgn0.4 | |- ( ph -> X =/= 0 ) |
|
| 5 | 2 | uzidd | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 6 | 5 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 7 | climrel | |- Rel ~~> |
|
| 8 | 7 | brrelex2i | |- ( seq M ( x. , F ) ~~> X -> X e. _V ) |
| 9 | 3 8 | syl | |- ( ph -> X e. _V ) |
| 10 | 4 3 | jca | |- ( ph -> ( X =/= 0 /\ seq M ( x. , F ) ~~> X ) ) |
| 11 | neeq1 | |- ( y = X -> ( y =/= 0 <-> X =/= 0 ) ) |
|
| 12 | breq2 | |- ( y = X -> ( seq M ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> X ) ) |
|
| 13 | 11 12 | anbi12d | |- ( y = X -> ( ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) <-> ( X =/= 0 /\ seq M ( x. , F ) ~~> X ) ) ) |
| 14 | 9 10 13 | spcedv | |- ( ph -> E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) |
| 15 | seqeq1 | |- ( n = M -> seq n ( x. , F ) = seq M ( x. , F ) ) |
|
| 16 | 15 | breq1d | |- ( n = M -> ( seq n ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> y ) ) |
| 17 | 16 | anbi2d | |- ( n = M -> ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) <-> ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) ) |
| 18 | 17 | exbidv | |- ( n = M -> ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) <-> E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) ) |
| 19 | 18 | rspcev | |- ( ( M e. Z /\ E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
| 20 | 6 14 19 | syl2anc | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |