This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zpnn0elfzo1 | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( Z + ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zpnn0elfzo | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( ( Z + N ) + 1 ) ) ) |
|
| 2 | zcn | |- ( Z e. ZZ -> Z e. CC ) |
|
| 3 | 2 | adantr | |- ( ( Z e. ZZ /\ N e. NN0 ) -> Z e. CC ) |
| 4 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 5 | 4 | adantl | |- ( ( Z e. ZZ /\ N e. NN0 ) -> N e. CC ) |
| 6 | 1cnd | |- ( ( Z e. ZZ /\ N e. NN0 ) -> 1 e. CC ) |
|
| 7 | 3 5 6 | addassd | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( ( Z + N ) + 1 ) = ( Z + ( N + 1 ) ) ) |
| 8 | 7 | oveq2d | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z ..^ ( ( Z + N ) + 1 ) ) = ( Z ..^ ( Z + ( N + 1 ) ) ) ) |
| 9 | 1 8 | eleqtrd | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( Z + ( N + 1 ) ) ) ) |