This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsnsgrp | |- RR*s e/ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr | |- 1 e. RR* |
|
| 2 | mnfxr | |- -oo e. RR* |
|
| 3 | pnfxr | |- +oo e. RR* |
|
| 4 | 1 2 3 | 3pm3.2i | |- ( 1 e. RR* /\ -oo e. RR* /\ +oo e. RR* ) |
| 5 | xaddcom | |- ( ( 1 e. RR* /\ -oo e. RR* ) -> ( 1 +e -oo ) = ( -oo +e 1 ) ) |
|
| 6 | 1 2 5 | mp2an | |- ( 1 +e -oo ) = ( -oo +e 1 ) |
| 7 | 1re | |- 1 e. RR |
|
| 8 | renepnf | |- ( 1 e. RR -> 1 =/= +oo ) |
|
| 9 | 7 8 | ax-mp | |- 1 =/= +oo |
| 10 | xaddmnf2 | |- ( ( 1 e. RR* /\ 1 =/= +oo ) -> ( -oo +e 1 ) = -oo ) |
|
| 11 | 1 9 10 | mp2an | |- ( -oo +e 1 ) = -oo |
| 12 | 6 11 | eqtri | |- ( 1 +e -oo ) = -oo |
| 13 | 12 | oveq1i | |- ( ( 1 +e -oo ) +e +oo ) = ( -oo +e +oo ) |
| 14 | mnfaddpnf | |- ( -oo +e +oo ) = 0 |
|
| 15 | 13 14 | eqtri | |- ( ( 1 +e -oo ) +e +oo ) = 0 |
| 16 | 0ne1 | |- 0 =/= 1 |
|
| 17 | 15 16 | eqnetri | |- ( ( 1 +e -oo ) +e +oo ) =/= 1 |
| 18 | 14 | oveq2i | |- ( 1 +e ( -oo +e +oo ) ) = ( 1 +e 0 ) |
| 19 | xaddrid | |- ( 1 e. RR* -> ( 1 +e 0 ) = 1 ) |
|
| 20 | 1 19 | ax-mp | |- ( 1 +e 0 ) = 1 |
| 21 | 18 20 | eqtri | |- ( 1 +e ( -oo +e +oo ) ) = 1 |
| 22 | 17 21 | neeqtrri | |- ( ( 1 +e -oo ) +e +oo ) =/= ( 1 +e ( -oo +e +oo ) ) |
| 23 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 24 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 25 | 23 24 | isnsgrp | |- ( ( 1 e. RR* /\ -oo e. RR* /\ +oo e. RR* ) -> ( ( ( 1 +e -oo ) +e +oo ) =/= ( 1 +e ( -oo +e +oo ) ) -> RR*s e/ Smgrp ) ) |
| 26 | 4 22 25 | mp2 | |- RR*s e/ Smgrp |