This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nn0subm and friends. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
||
| cnsubmlem.3 | |- 0 e. A |
||
| Assertion | cnsubmlem | |- A e. ( SubMnd ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| 2 | cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
|
| 3 | cnsubmlem.3 | |- 0 e. A |
|
| 4 | 1 | ssriv | |- A C_ CC |
| 5 | 2 | rgen2 | |- A. x e. A A. y e. A ( x + y ) e. A |
| 6 | cnring | |- CCfld e. Ring |
|
| 7 | ringmnd | |- ( CCfld e. Ring -> CCfld e. Mnd ) |
|
| 8 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 9 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 10 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 11 | 8 9 10 | issubm | |- ( CCfld e. Mnd -> ( A e. ( SubMnd ` CCfld ) <-> ( A C_ CC /\ 0 e. A /\ A. x e. A A. y e. A ( x + y ) e. A ) ) ) |
| 12 | 6 7 11 | mp2b | |- ( A e. ( SubMnd ` CCfld ) <-> ( A C_ CC /\ 0 e. A /\ A. x e. A A. y e. A ( x + y ) e. A ) ) |
| 13 | 4 3 5 12 | mpbir3an | |- A e. ( SubMnd ` CCfld ) |