This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrninxp | |- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = `' { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp2 | |- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = { <. u , x >. | ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) } |
|
| 2 | df-3an | |- ( ( u e. A /\ x e. ( B X. C ) /\ u ( R |X. S ) x ) <-> ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) ) |
|
| 3 | 3anan12 | |- ( ( u e. A /\ x e. ( B X. C ) /\ u ( R |X. S ) x ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) ) |
|
| 4 | 2 3 | bitr3i | |- ( ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) ) |
| 5 | 4 | opabbii | |- { <. u , x >. | ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) } = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
| 6 | 1 5 | eqtri | |- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
| 7 | cnvopab | |- `' { <. x , u >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
|
| 8 | breq2 | |- ( x = <. y , z >. -> ( u ( R |X. S ) x <-> u ( R |X. S ) <. y , z >. ) ) |
|
| 9 | 8 | anbi2d | |- ( x = <. y , z >. -> ( ( u e. A /\ u ( R |X. S ) x ) <-> ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) ) |
| 10 | 9 | dfoprab4 | |- { <. x , u >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } = { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |
| 11 | 10 | cnveqi | |- `' { <. x , u >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } = `' { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |
| 12 | 6 7 11 | 3eqtr2i | |- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = `' { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |