This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxp2 | |- ( R i^i ( A X. B ) ) = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ x R y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | |- Rel ( R i^i ( A X. B ) ) |
|
| 2 | dfrel4v | |- ( Rel ( R i^i ( A X. B ) ) <-> ( R i^i ( A X. B ) ) = { <. x , y >. | x ( R i^i ( A X. B ) ) y } ) |
|
| 3 | 1 2 | mpbi | |- ( R i^i ( A X. B ) ) = { <. x , y >. | x ( R i^i ( A X. B ) ) y } |
| 4 | brinxp2 | |- ( x ( R i^i ( A X. B ) ) y <-> ( ( x e. A /\ y e. B ) /\ x R y ) ) |
|
| 5 | 4 | opabbii | |- { <. x , y >. | x ( R i^i ( A X. B ) ) y } = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ x R y ) } |
| 6 | 3 5 | eqtri | |- ( R i^i ( A X. B ) ) = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ x R y ) } |