This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-12 . (Revised by SN, 7-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvopab | |- `' { <. x , y >. | ph } = { <. y , x >. | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' { <. x , y >. | ph } |
|
| 2 | relopabv | |- Rel { <. y , x >. | ph } |
|
| 3 | elopab | |- ( <. w , z >. e. { <. x , y >. | ph } <-> E. x E. y ( <. w , z >. = <. x , y >. /\ ph ) ) |
|
| 4 | excom | |- ( E. x E. y ( <. w , z >. = <. x , y >. /\ ph ) <-> E. y E. x ( <. w , z >. = <. x , y >. /\ ph ) ) |
|
| 5 | ancom | |- ( ( w = x /\ z = y ) <-> ( z = y /\ w = x ) ) |
|
| 6 | vex | |- w e. _V |
|
| 7 | vex | |- z e. _V |
|
| 8 | 6 7 | opth | |- ( <. w , z >. = <. x , y >. <-> ( w = x /\ z = y ) ) |
| 9 | 7 6 | opth | |- ( <. z , w >. = <. y , x >. <-> ( z = y /\ w = x ) ) |
| 10 | 5 8 9 | 3bitr4i | |- ( <. w , z >. = <. x , y >. <-> <. z , w >. = <. y , x >. ) |
| 11 | 10 | anbi1i | |- ( ( <. w , z >. = <. x , y >. /\ ph ) <-> ( <. z , w >. = <. y , x >. /\ ph ) ) |
| 12 | 11 | 2exbii | |- ( E. y E. x ( <. w , z >. = <. x , y >. /\ ph ) <-> E. y E. x ( <. z , w >. = <. y , x >. /\ ph ) ) |
| 13 | 3 4 12 | 3bitri | |- ( <. w , z >. e. { <. x , y >. | ph } <-> E. y E. x ( <. z , w >. = <. y , x >. /\ ph ) ) |
| 14 | 7 6 | opelcnv | |- ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. w , z >. e. { <. x , y >. | ph } ) |
| 15 | elopab | |- ( <. z , w >. e. { <. y , x >. | ph } <-> E. y E. x ( <. z , w >. = <. y , x >. /\ ph ) ) |
|
| 16 | 13 14 15 | 3bitr4i | |- ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. z , w >. e. { <. y , x >. | ph } ) |
| 17 | 1 2 16 | eqrelriiv | |- `' { <. x , y >. | ph } = { <. y , x >. | ph } |