This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrninxp | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑢 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝑦 , 𝑧 〉 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp2 | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { 〈 𝑢 , 𝑥 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) } | |
| 2 | df-3an | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) | |
| 3 | 3anan12 | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) ) |
| 5 | 4 | opabbii | ⊢ { 〈 𝑢 , 𝑥 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) } = { 〈 𝑢 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } |
| 6 | 1 5 | eqtri | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { 〈 𝑢 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } |
| 7 | cnvopab | ⊢ ◡ { 〈 𝑥 , 𝑢 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } = { 〈 𝑢 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } | |
| 8 | breq2 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ↔ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝑦 , 𝑧 〉 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝑦 , 𝑧 〉 ) ) ) |
| 10 | 9 | dfoprab4 | ⊢ { 〈 𝑥 , 𝑢 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } = { 〈 〈 𝑦 , 𝑧 〉 , 𝑢 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝑦 , 𝑧 〉 ) ) } |
| 11 | 10 | cnveqi | ⊢ ◡ { 〈 𝑥 , 𝑢 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } = ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑢 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝑦 , 𝑧 〉 ) ) } |
| 12 | 6 7 11 | 3eqtr2i | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = ◡ { 〈 〈 𝑦 , 𝑧 〉 , 𝑢 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 〈 𝑦 , 𝑧 〉 ) ) } |