This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of Gleason p. 173. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltxr | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> ( ( ( ( A e. RR /\ B e. RR ) /\ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 | |- ( ( x = A /\ y = B ) -> ( x |
|
| 2 | df-3an | |- ( ( x e. RR /\ y e. RR /\ x |
|
| 3 | 2 | opabbii | |- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 4 | 1 3 | brab2a | |- ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 5 | 4 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 6 | brun | |- ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B <-> ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) ) |
|
| 7 | brxp | |- ( A ( ( RR u. { -oo } ) X. { +oo } ) B <-> ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) ) |
|
| 8 | elun | |- ( A e. ( RR u. { -oo } ) <-> ( A e. RR \/ A e. { -oo } ) ) |
|
| 9 | orcom | |- ( ( A e. RR \/ A e. { -oo } ) <-> ( A e. { -oo } \/ A e. RR ) ) |
|
| 10 | 8 9 | bitri | |- ( A e. ( RR u. { -oo } ) <-> ( A e. { -oo } \/ A e. RR ) ) |
| 11 | elsng | |- ( A e. RR* -> ( A e. { -oo } <-> A = -oo ) ) |
|
| 12 | 11 | orbi1d | |- ( A e. RR* -> ( ( A e. { -oo } \/ A e. RR ) <-> ( A = -oo \/ A e. RR ) ) ) |
| 13 | 10 12 | bitrid | |- ( A e. RR* -> ( A e. ( RR u. { -oo } ) <-> ( A = -oo \/ A e. RR ) ) ) |
| 14 | elsng | |- ( B e. RR* -> ( B e. { +oo } <-> B = +oo ) ) |
|
| 15 | 13 14 | bi2anan9 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) <-> ( ( A = -oo \/ A e. RR ) /\ B = +oo ) ) ) |
| 16 | andir | |- ( ( ( A = -oo \/ A e. RR ) /\ B = +oo ) <-> ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) ) |
|
| 17 | 15 16 | bitrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) <-> ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) ) ) |
| 18 | 7 17 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A ( ( RR u. { -oo } ) X. { +oo } ) B <-> ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) ) ) |
| 19 | brxp | |- ( A ( { -oo } X. RR ) B <-> ( A e. { -oo } /\ B e. RR ) ) |
|
| 20 | 11 | anbi1d | |- ( A e. RR* -> ( ( A e. { -oo } /\ B e. RR ) <-> ( A = -oo /\ B e. RR ) ) ) |
| 21 | 20 | adantr | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. { -oo } /\ B e. RR ) <-> ( A = -oo /\ B e. RR ) ) ) |
| 22 | 19 21 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A ( { -oo } X. RR ) B <-> ( A = -oo /\ B e. RR ) ) ) |
| 23 | 18 22 | orbi12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) <-> ( ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) \/ ( A = -oo /\ B e. RR ) ) ) ) |
| 24 | orass | |- ( ( ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) \/ ( A = -oo /\ B e. RR ) ) <-> ( ( A = -oo /\ B = +oo ) \/ ( ( A e. RR /\ B = +oo ) \/ ( A = -oo /\ B e. RR ) ) ) ) |
|
| 25 | 23 24 | bitrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) <-> ( ( A = -oo /\ B = +oo ) \/ ( ( A e. RR /\ B = +oo ) \/ ( A = -oo /\ B e. RR ) ) ) ) ) |
| 26 | 6 25 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B <-> ( ( A = -oo /\ B = +oo ) \/ ( ( A e. RR /\ B = +oo ) \/ ( A = -oo /\ B e. RR ) ) ) ) ) |
| 27 | 5 26 | orbi12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 28 | df-ltxr | |- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 29 | 28 | breqi | |- ( A < B <-> A ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 30 | brun | |- ( A ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 31 | 29 30 | bitri | |- ( A < B <-> ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 32 | orass | |- ( ( ( ( ( A e. RR /\ B e. RR ) /\ A |
|
| 33 | 27 31 32 | 3bitr4g | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> ( ( ( ( A e. RR /\ B e. RR ) /\ A |