This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpstps.t | |- T = ( R Xs. S ) |
|
| Assertion | xpstps | |- ( ( R e. TopSp /\ S e. TopSp ) -> T e. TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpstps.t | |- T = ( R Xs. S ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | simpl | |- ( ( R e. TopSp /\ S e. TopSp ) -> R e. TopSp ) |
|
| 5 | simpr | |- ( ( R e. TopSp /\ S e. TopSp ) -> S e. TopSp ) |
|
| 6 | eqid | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 7 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 8 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 9 | 1 2 3 4 5 6 7 8 | xpsval | |- ( ( R e. TopSp /\ S e. TopSp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 10 | 1 2 3 4 5 6 7 8 | xpsrnbas | |- ( ( R e. TopSp /\ S e. TopSp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 11 | 6 | xpsff1o2 | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 12 | 11 | a1i | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 13 | f1ocnv | |- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 14 | f1ofo | |- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 15 | 12 13 14 | 3syl | |- ( ( R e. TopSp /\ S e. TopSp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 16 | fvexd | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( Scalar ` R ) e. _V ) |
|
| 17 | 2on | |- 2o e. On |
|
| 18 | 17 | a1i | |- ( ( R e. TopSp /\ S e. TopSp ) -> 2o e. On ) |
| 19 | xpscf | |- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> TopSp <-> ( R e. TopSp /\ S e. TopSp ) ) |
|
| 20 | 19 | biimpri | |- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> TopSp ) |
| 21 | 8 16 18 20 | prdstps | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. TopSp ) |
| 22 | 9 10 15 21 | imastps | |- ( ( R e. TopSp /\ S e. TopSp ) -> T e. TopSp ) |