This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpssca.t | |- T = ( R Xs. S ) |
|
| xpssca.g | |- G = ( Scalar ` R ) |
||
| xpssca.1 | |- ( ph -> R e. V ) |
||
| xpssca.2 | |- ( ph -> S e. W ) |
||
| Assertion | xpssca | |- ( ph -> G = ( Scalar ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpssca.t | |- T = ( R Xs. S ) |
|
| 2 | xpssca.g | |- G = ( Scalar ` R ) |
|
| 3 | xpssca.1 | |- ( ph -> R e. V ) |
|
| 4 | xpssca.2 | |- ( ph -> S e. W ) |
|
| 5 | eqid | |- ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 6 | 2 | fvexi | |- G e. _V |
| 7 | 6 | a1i | |- ( ph -> G e. _V ) |
| 8 | prex | |- { <. (/) , R >. , <. 1o , S >. } e. _V |
|
| 9 | 8 | a1i | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } e. _V ) |
| 10 | 5 7 9 | prdssca | |- ( ph -> G = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 13 | eqid | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 14 | 1 11 12 3 4 13 2 5 | xpsval | |- ( ph -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 15 | 1 11 12 3 4 13 2 5 | xpsrnbas | |- ( ph -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 16 | 13 | xpsff1o2 | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 17 | f1ocnv | |- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 18 | 16 17 | mp1i | |- ( ph -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 19 | f1ofo | |- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 21 | ovexd | |- ( ph -> ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 22 | eqid | |- ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 23 | 14 15 20 21 22 | imassca | |- ( ph -> ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Scalar ` T ) ) |
| 24 | 10 23 | eqtrd | |- ( ph -> G = ( Scalar ` T ) ) |