This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsms.t | |- T = ( R Xs. S ) |
|
| Assertion | xpsms | |- ( ( R e. MetSp /\ S e. MetSp ) -> T e. MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsms.t | |- T = ( R Xs. S ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | simpl | |- ( ( R e. MetSp /\ S e. MetSp ) -> R e. MetSp ) |
|
| 5 | simpr | |- ( ( R e. MetSp /\ S e. MetSp ) -> S e. MetSp ) |
|
| 6 | eqid | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 7 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 8 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 9 | 1 2 3 4 5 6 7 8 | xpsval | |- ( ( R e. MetSp /\ S e. MetSp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 10 | 1 2 3 4 5 6 7 8 | xpsrnbas | |- ( ( R e. MetSp /\ S e. MetSp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 11 | 6 | xpsff1o2 | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 12 | f1ocnv | |- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
|
| 13 | 11 12 | mp1i | |- ( ( R e. MetSp /\ S e. MetSp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 14 | fvexd | |- ( ( R e. MetSp /\ S e. MetSp ) -> ( Scalar ` R ) e. _V ) |
|
| 15 | 2onn | |- 2o e. _om |
|
| 16 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 17 | 15 16 | mp1i | |- ( ( R e. MetSp /\ S e. MetSp ) -> 2o e. Fin ) |
| 18 | xpscf | |- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp <-> ( R e. MetSp /\ S e. MetSp ) ) |
|
| 19 | 18 | biimpri | |- ( ( R e. MetSp /\ S e. MetSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp ) |
| 20 | 8 | prdsms | |- ( ( ( Scalar ` R ) e. _V /\ 2o e. Fin /\ { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. MetSp ) |
| 21 | 14 17 19 20 | syl3anc | |- ( ( R e. MetSp /\ S e. MetSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. MetSp ) |
| 22 | 9 10 13 21 | imasf1oms | |- ( ( R e. MetSp /\ S e. MetSp ) -> T e. MetSp ) |