This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpsfrnel2 | |- ( { <. (/) , X >. , <. 1o , Y >. } e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( X e. A /\ Y e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsfrnel | |- ( { <. (/) , X >. , <. 1o , Y >. } e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) ) |
|
| 2 | fnpr2ob | |- ( ( X e. _V /\ Y e. _V ) <-> { <. (/) , X >. , <. 1o , Y >. } Fn 2o ) |
|
| 3 | 2 | biimpri | |- ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o -> ( X e. _V /\ Y e. _V ) ) |
| 4 | 3 | 3ad2ant1 | |- ( ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) -> ( X e. _V /\ Y e. _V ) ) |
| 5 | elex | |- ( X e. A -> X e. _V ) |
|
| 6 | elex | |- ( Y e. B -> Y e. _V ) |
|
| 7 | 5 6 | anim12i | |- ( ( X e. A /\ Y e. B ) -> ( X e. _V /\ Y e. _V ) ) |
| 8 | 3anass | |- ( ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) <-> ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) ) ) |
|
| 9 | fnpr2o | |- ( ( X e. _V /\ Y e. _V ) -> { <. (/) , X >. , <. 1o , Y >. } Fn 2o ) |
|
| 10 | 9 | biantrurd | |- ( ( X e. _V /\ Y e. _V ) -> ( ( ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) <-> ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) ) ) ) |
| 11 | fvpr0o | |- ( X e. _V -> ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) = X ) |
|
| 12 | 11 | eleq1d | |- ( X e. _V -> ( ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A <-> X e. A ) ) |
| 13 | fvpr1o | |- ( Y e. _V -> ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) = Y ) |
|
| 14 | 13 | eleq1d | |- ( Y e. _V -> ( ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B <-> Y e. B ) ) |
| 15 | 12 14 | bi2anan9 | |- ( ( X e. _V /\ Y e. _V ) -> ( ( ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) <-> ( X e. A /\ Y e. B ) ) ) |
| 16 | 10 15 | bitr3d | |- ( ( X e. _V /\ Y e. _V ) -> ( ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) ) <-> ( X e. A /\ Y e. B ) ) ) |
| 17 | 8 16 | bitrid | |- ( ( X e. _V /\ Y e. _V ) -> ( ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) <-> ( X e. A /\ Y e. B ) ) ) |
| 18 | 4 7 17 | pm5.21nii | |- ( ( { <. (/) , X >. , <. 1o , Y >. } Fn 2o /\ ( { <. (/) , X >. , <. 1o , Y >. } ` (/) ) e. A /\ ( { <. (/) , X >. , <. 1o , Y >. } ` 1o ) e. B ) <-> ( X e. A /\ Y e. B ) ) |
| 19 | 1 18 | bitri | |- ( { <. (/) , X >. , <. 1o , Y >. } e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( X e. A /\ Y e. B ) ) |