This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional version of fnpr2o . (Contributed by Jim Kingdon, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnpr2ob | |- ( ( A e. _V /\ B e. _V ) <-> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnpr2o | |- ( ( A e. _V /\ B e. _V ) -> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 2 | prid1 | |- (/) e. { (/) , 1o } |
| 4 | df2o3 | |- 2o = { (/) , 1o } |
|
| 5 | 3 4 | eleqtrri | |- (/) e. 2o |
| 6 | fndm | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> dom { <. (/) , A >. , <. 1o , B >. } = 2o ) |
|
| 7 | 5 6 | eleqtrrid | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> (/) e. dom { <. (/) , A >. , <. 1o , B >. } ) |
| 8 | 2 | eldm2 | |- ( (/) e. dom { <. (/) , A >. , <. 1o , B >. } <-> E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 9 | 7 8 | sylib | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 10 | 1n0 | |- 1o =/= (/) |
|
| 11 | 10 | nesymi | |- -. (/) = 1o |
| 12 | vex | |- k e. _V |
|
| 13 | 2 12 | opth1 | |- ( <. (/) , k >. = <. 1o , B >. -> (/) = 1o ) |
| 14 | 11 13 | mto | |- -. <. (/) , k >. = <. 1o , B >. |
| 15 | elpri | |- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. (/) , k >. = <. (/) , A >. \/ <. (/) , k >. = <. 1o , B >. ) ) |
|
| 16 | orel2 | |- ( -. <. (/) , k >. = <. 1o , B >. -> ( ( <. (/) , k >. = <. (/) , A >. \/ <. (/) , k >. = <. 1o , B >. ) -> <. (/) , k >. = <. (/) , A >. ) ) |
|
| 17 | 14 15 16 | mpsyl | |- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> <. (/) , k >. = <. (/) , A >. ) |
| 18 | 2 12 | opth | |- ( <. (/) , k >. = <. (/) , A >. <-> ( (/) = (/) /\ k = A ) ) |
| 19 | 17 18 | sylib | |- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( (/) = (/) /\ k = A ) ) |
| 20 | 19 | simprd | |- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> k = A ) |
| 21 | 20 | eximi | |- ( E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> E. k k = A ) |
| 22 | isset | |- ( A e. _V <-> E. k k = A ) |
|
| 23 | 21 22 | sylibr | |- ( E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> A e. _V ) |
| 24 | 9 23 | syl | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> A e. _V ) |
| 25 | 1oex | |- 1o e. _V |
|
| 26 | 25 | prid2 | |- 1o e. { (/) , 1o } |
| 27 | 26 4 | eleqtrri | |- 1o e. 2o |
| 28 | 27 6 | eleqtrrid | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> 1o e. dom { <. (/) , A >. , <. 1o , B >. } ) |
| 29 | 25 | eldm2 | |- ( 1o e. dom { <. (/) , A >. , <. 1o , B >. } <-> E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 30 | 28 29 | sylib | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 31 | 10 | neii | |- -. 1o = (/) |
| 32 | 25 12 | opth1 | |- ( <. 1o , k >. = <. (/) , A >. -> 1o = (/) ) |
| 33 | 31 32 | mto | |- -. <. 1o , k >. = <. (/) , A >. |
| 34 | elpri | |- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. 1o , k >. = <. (/) , A >. \/ <. 1o , k >. = <. 1o , B >. ) ) |
|
| 35 | 34 | orcomd | |- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. 1o , k >. = <. 1o , B >. \/ <. 1o , k >. = <. (/) , A >. ) ) |
| 36 | orel2 | |- ( -. <. 1o , k >. = <. (/) , A >. -> ( ( <. 1o , k >. = <. 1o , B >. \/ <. 1o , k >. = <. (/) , A >. ) -> <. 1o , k >. = <. 1o , B >. ) ) |
|
| 37 | 33 35 36 | mpsyl | |- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> <. 1o , k >. = <. 1o , B >. ) |
| 38 | 25 12 | opth | |- ( <. 1o , k >. = <. 1o , B >. <-> ( 1o = 1o /\ k = B ) ) |
| 39 | 37 38 | sylib | |- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( 1o = 1o /\ k = B ) ) |
| 40 | 39 | simprd | |- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> k = B ) |
| 41 | 40 | eximi | |- ( E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> E. k k = B ) |
| 42 | isset | |- ( B e. _V <-> E. k k = B ) |
|
| 43 | 41 42 | sylibr | |- ( E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> B e. _V ) |
| 44 | 30 43 | syl | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> B e. _V ) |
| 45 | 24 44 | jca | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> ( A e. _V /\ B e. _V ) ) |
| 46 | 1 45 | impbii | |- ( ( A e. _V /\ B e. _V ) <-> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |