This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref , ersymb , and ertr . (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 2-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-er | |- ( R Er A <-> ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | 1 0 | wer | |- R Er A |
| 3 | 0 | wrel | |- Rel R |
| 4 | 0 | cdm | |- dom R |
| 5 | 4 1 | wceq | |- dom R = A |
| 6 | 0 | ccnv | |- `' R |
| 7 | 0 0 | ccom | |- ( R o. R ) |
| 8 | 6 7 | cun | |- ( `' R u. ( R o. R ) ) |
| 9 | 8 0 | wss | |- ( `' R u. ( R o. R ) ) C_ R |
| 10 | 3 5 9 | w3a | |- ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) |
| 11 | 2 10 | wb | |- ( R Er A <-> ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) ) |