This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian square is an equivalence relation (in general, it is not a poset). (Contributed by FL, 31-Jul-2009) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpider | ⊢ ( 𝐴 × 𝐴 ) Er 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( 𝐴 × 𝐴 ) | |
| 2 | dmxpid | ⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 | |
| 3 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) | |
| 4 | xpidtr | ⊢ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) | |
| 5 | uneq1 | ⊢ ( ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ) | |
| 6 | unss2 | ⊢ ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ) | |
| 7 | unidm | ⊢ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) | |
| 8 | eqtr | ⊢ ( ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) | |
| 9 | sseq2 | ⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ↔ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) | |
| 10 | 9 | biimpd | ⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 12 | 7 11 | mpan2 | ⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 13 | 5 6 12 | syl2im | ⊢ ( ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 14 | 3 4 13 | mp2 | ⊢ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 15 | df-er | ⊢ ( ( 𝐴 × 𝐴 ) Er 𝐴 ↔ ( Rel ( 𝐴 × 𝐴 ) ∧ dom ( 𝐴 × 𝐴 ) = 𝐴 ∧ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) | |
| 16 | 1 2 14 15 | mpbir3an | ⊢ ( 𝐴 × 𝐴 ) Er 𝐴 |