This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpct | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A X. B ) ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | |- ( B ~<_ _om -> B e. _V ) |
|
| 2 | 1 | adantl | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> B e. _V ) |
| 3 | simpl | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> A ~<_ _om ) |
|
| 4 | xpdom1g | |- ( ( B e. _V /\ A ~<_ _om ) -> ( A X. B ) ~<_ ( _om X. B ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A X. B ) ~<_ ( _om X. B ) ) |
| 6 | omex | |- _om e. _V |
|
| 7 | 6 | xpdom2 | |- ( B ~<_ _om -> ( _om X. B ) ~<_ ( _om X. _om ) ) |
| 8 | 7 | adantl | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( _om X. B ) ~<_ ( _om X. _om ) ) |
| 9 | domtr | |- ( ( ( A X. B ) ~<_ ( _om X. B ) /\ ( _om X. B ) ~<_ ( _om X. _om ) ) -> ( A X. B ) ~<_ ( _om X. _om ) ) |
|
| 10 | 5 8 9 | syl2anc | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A X. B ) ~<_ ( _om X. _om ) ) |
| 11 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 12 | domentr | |- ( ( ( A X. B ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( A X. B ) ~<_ _om ) |
|
| 13 | 10 11 12 | sylancl | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A X. B ) ~<_ _om ) |