This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvf1o | |- ( Rel A -> ( x e. A |-> U. `' { x } ) : A -1-1-onto-> `' A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( x e. A |-> U. `' { x } ) = ( x e. A |-> U. `' { x } ) |
|
| 2 | vsnex | |- { x } e. _V |
|
| 3 | 2 | cnvex | |- `' { x } e. _V |
| 4 | 3 | uniex | |- U. `' { x } e. _V |
| 5 | 4 | a1i | |- ( ( Rel A /\ x e. A ) -> U. `' { x } e. _V ) |
| 6 | vsnex | |- { y } e. _V |
|
| 7 | 6 | cnvex | |- `' { y } e. _V |
| 8 | 7 | uniex | |- U. `' { y } e. _V |
| 9 | 8 | a1i | |- ( ( Rel A /\ y e. `' A ) -> U. `' { y } e. _V ) |
| 10 | cnvf1olem | |- ( ( Rel A /\ ( x e. A /\ y = U. `' { x } ) ) -> ( y e. `' A /\ x = U. `' { y } ) ) |
|
| 11 | relcnv | |- Rel `' A |
|
| 12 | simpr | |- ( ( Rel A /\ ( y e. `' A /\ x = U. `' { y } ) ) -> ( y e. `' A /\ x = U. `' { y } ) ) |
|
| 13 | cnvf1olem | |- ( ( Rel `' A /\ ( y e. `' A /\ x = U. `' { y } ) ) -> ( x e. `' `' A /\ y = U. `' { x } ) ) |
|
| 14 | 11 12 13 | sylancr | |- ( ( Rel A /\ ( y e. `' A /\ x = U. `' { y } ) ) -> ( x e. `' `' A /\ y = U. `' { x } ) ) |
| 15 | dfrel2 | |- ( Rel A <-> `' `' A = A ) |
|
| 16 | eleq2 | |- ( `' `' A = A -> ( x e. `' `' A <-> x e. A ) ) |
|
| 17 | 15 16 | sylbi | |- ( Rel A -> ( x e. `' `' A <-> x e. A ) ) |
| 18 | 17 | anbi1d | |- ( Rel A -> ( ( x e. `' `' A /\ y = U. `' { x } ) <-> ( x e. A /\ y = U. `' { x } ) ) ) |
| 19 | 18 | adantr | |- ( ( Rel A /\ ( y e. `' A /\ x = U. `' { y } ) ) -> ( ( x e. `' `' A /\ y = U. `' { x } ) <-> ( x e. A /\ y = U. `' { x } ) ) ) |
| 20 | 14 19 | mpbid | |- ( ( Rel A /\ ( y e. `' A /\ x = U. `' { y } ) ) -> ( x e. A /\ y = U. `' { x } ) ) |
| 21 | 10 20 | impbida | |- ( Rel A -> ( ( x e. A /\ y = U. `' { x } ) <-> ( y e. `' A /\ x = U. `' { y } ) ) ) |
| 22 | 1 5 9 21 | f1od | |- ( Rel A -> ( x e. A |-> U. `' { x } ) : A -1-1-onto-> `' A ) |