This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xmul | |- *e = ( x e. RR* , y e. RR* |-> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxmu | |- *e |
|
| 1 | vx | |- x |
|
| 2 | cxr | |- RR* |
|
| 3 | vy | |- y |
|
| 4 | 1 | cv | |- x |
| 5 | cc0 | |- 0 |
|
| 6 | 4 5 | wceq | |- x = 0 |
| 7 | 3 | cv | |- y |
| 8 | 7 5 | wceq | |- y = 0 |
| 9 | 6 8 | wo | |- ( x = 0 \/ y = 0 ) |
| 10 | clt | |- < |
|
| 11 | 5 7 10 | wbr | |- 0 < y |
| 12 | cpnf | |- +oo |
|
| 13 | 4 12 | wceq | |- x = +oo |
| 14 | 11 13 | wa | |- ( 0 < y /\ x = +oo ) |
| 15 | 7 5 10 | wbr | |- y < 0 |
| 16 | cmnf | |- -oo |
|
| 17 | 4 16 | wceq | |- x = -oo |
| 18 | 15 17 | wa | |- ( y < 0 /\ x = -oo ) |
| 19 | 14 18 | wo | |- ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) |
| 20 | 5 4 10 | wbr | |- 0 < x |
| 21 | 7 12 | wceq | |- y = +oo |
| 22 | 20 21 | wa | |- ( 0 < x /\ y = +oo ) |
| 23 | 4 5 10 | wbr | |- x < 0 |
| 24 | 7 16 | wceq | |- y = -oo |
| 25 | 23 24 | wa | |- ( x < 0 /\ y = -oo ) |
| 26 | 22 25 | wo | |- ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) |
| 27 | 19 26 | wo | |- ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) |
| 28 | 11 17 | wa | |- ( 0 < y /\ x = -oo ) |
| 29 | 15 13 | wa | |- ( y < 0 /\ x = +oo ) |
| 30 | 28 29 | wo | |- ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) |
| 31 | 20 24 | wa | |- ( 0 < x /\ y = -oo ) |
| 32 | 23 21 | wa | |- ( x < 0 /\ y = +oo ) |
| 33 | 31 32 | wo | |- ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) |
| 34 | 30 33 | wo | |- ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) |
| 35 | cmul | |- x. |
|
| 36 | 4 7 35 | co | |- ( x x. y ) |
| 37 | 34 16 36 | cif | |- if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) |
| 38 | 27 12 37 | cif | |- if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) |
| 39 | 9 5 38 | cif | |- if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) |
| 40 | 1 3 2 2 39 | cmpo | |- ( x e. RR* , y e. RR* |-> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) ) |
| 41 | 0 40 | wceq | |- *e = ( x e. RR* , y e. RR* |-> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) ) |