This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology induced by a uniform structure generated by an extended metric D is that metric's open sets. (Contributed by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetutop | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( MetOpen ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetpsmet | |- ( D e. ( *Met ` X ) -> D e. ( PsMet ` X ) ) |
|
| 2 | psmetutop | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( topGen ` ran ( ball ` D ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( topGen ` ran ( ball ` D ) ) ) |
| 4 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 5 | 4 | mopnval | |- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( topGen ` ran ( ball ` D ) ) ) |
| 6 | 5 | adantl | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( MetOpen ` D ) = ( topGen ` ran ( ball ` D ) ) ) |
| 7 | 3 6 | eqtr4d | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( MetOpen ` D ) ) |