This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of le2add . (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xle2add | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( A <_ C /\ B <_ D ) -> ( A +e B ) <_ ( C +e D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> A e. RR* ) |
|
| 2 | simprl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> C e. RR* ) |
|
| 3 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> B e. RR* ) |
|
| 4 | xleadd1a | |- ( ( ( A e. RR* /\ C e. RR* /\ B e. RR* ) /\ A <_ C ) -> ( A +e B ) <_ ( C +e B ) ) |
|
| 5 | 4 | ex | |- ( ( A e. RR* /\ C e. RR* /\ B e. RR* ) -> ( A <_ C -> ( A +e B ) <_ ( C +e B ) ) ) |
| 6 | 1 2 3 5 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( A <_ C -> ( A +e B ) <_ ( C +e B ) ) ) |
| 7 | simprr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> D e. RR* ) |
|
| 8 | xleadd2a | |- ( ( ( B e. RR* /\ D e. RR* /\ C e. RR* ) /\ B <_ D ) -> ( C +e B ) <_ ( C +e D ) ) |
|
| 9 | 8 | ex | |- ( ( B e. RR* /\ D e. RR* /\ C e. RR* ) -> ( B <_ D -> ( C +e B ) <_ ( C +e D ) ) ) |
| 10 | 3 7 2 9 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( B <_ D -> ( C +e B ) <_ ( C +e D ) ) ) |
| 11 | xaddcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
|
| 12 | 11 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( A +e B ) e. RR* ) |
| 13 | xaddcl | |- ( ( C e. RR* /\ B e. RR* ) -> ( C +e B ) e. RR* ) |
|
| 14 | 2 3 13 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( C +e B ) e. RR* ) |
| 15 | xaddcl | |- ( ( C e. RR* /\ D e. RR* ) -> ( C +e D ) e. RR* ) |
|
| 16 | 15 | adantl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( C +e D ) e. RR* ) |
| 17 | xrletr | |- ( ( ( A +e B ) e. RR* /\ ( C +e B ) e. RR* /\ ( C +e D ) e. RR* ) -> ( ( ( A +e B ) <_ ( C +e B ) /\ ( C +e B ) <_ ( C +e D ) ) -> ( A +e B ) <_ ( C +e D ) ) ) |
|
| 18 | 12 14 16 17 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( ( A +e B ) <_ ( C +e B ) /\ ( C +e B ) <_ ( C +e D ) ) -> ( A +e B ) <_ ( C +e D ) ) ) |
| 19 | 6 10 18 | syl2and | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( A <_ C /\ B <_ D ) -> ( A +e B ) <_ ( C +e D ) ) ) |