This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xadd | |- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxad | |- +e |
|
| 1 | vx | |- x |
|
| 2 | cxr | |- RR* |
|
| 3 | vy | |- y |
|
| 4 | 1 | cv | |- x |
| 5 | cpnf | |- +oo |
|
| 6 | 4 5 | wceq | |- x = +oo |
| 7 | 3 | cv | |- y |
| 8 | cmnf | |- -oo |
|
| 9 | 7 8 | wceq | |- y = -oo |
| 10 | cc0 | |- 0 |
|
| 11 | 9 10 5 | cif | |- if ( y = -oo , 0 , +oo ) |
| 12 | 4 8 | wceq | |- x = -oo |
| 13 | 7 5 | wceq | |- y = +oo |
| 14 | 13 10 8 | cif | |- if ( y = +oo , 0 , -oo ) |
| 15 | caddc | |- + |
|
| 16 | 4 7 15 | co | |- ( x + y ) |
| 17 | 9 8 16 | cif | |- if ( y = -oo , -oo , ( x + y ) ) |
| 18 | 13 5 17 | cif | |- if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) |
| 19 | 12 14 18 | cif | |- if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) |
| 20 | 6 11 19 | cif | |- if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) |
| 21 | 1 3 2 2 20 | cmpo | |- ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
| 22 | 0 21 | wceq | |- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |