This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of extended real addition. See xaddass for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddass2 | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> A e. RR* ) |
|
| 2 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
| 3 | 1 2 | syl | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A e. RR* ) |
| 4 | simp1r | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> A =/= +oo ) |
|
| 5 | pnfxr | |- +oo e. RR* |
|
| 6 | xneg11 | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A = -e +oo <-> A = +oo ) ) |
|
| 7 | 1 5 6 | sylancl | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A = -e +oo <-> A = +oo ) ) |
| 8 | 7 | necon3bid | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A =/= -e +oo <-> A =/= +oo ) ) |
| 9 | 4 8 | mpbird | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A =/= -e +oo ) |
| 10 | xnegpnf | |- -e +oo = -oo |
|
| 11 | 10 | a1i | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e +oo = -oo ) |
| 12 | 9 11 | neeqtrd | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e A =/= -oo ) |
| 13 | simp2l | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> B e. RR* ) |
|
| 14 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 15 | 13 14 | syl | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B e. RR* ) |
| 16 | simp2r | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> B =/= +oo ) |
|
| 17 | xneg11 | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( -e B = -e +oo <-> B = +oo ) ) |
|
| 18 | 13 5 17 | sylancl | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e B = -e +oo <-> B = +oo ) ) |
| 19 | 18 | necon3bid | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e B =/= -e +oo <-> B =/= +oo ) ) |
| 20 | 16 19 | mpbird | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B =/= -e +oo ) |
| 21 | 20 11 | neeqtrd | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e B =/= -oo ) |
| 22 | simp3l | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> C e. RR* ) |
|
| 23 | xnegcl | |- ( C e. RR* -> -e C e. RR* ) |
|
| 24 | 22 23 | syl | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C e. RR* ) |
| 25 | simp3r | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> C =/= +oo ) |
|
| 26 | xneg11 | |- ( ( C e. RR* /\ +oo e. RR* ) -> ( -e C = -e +oo <-> C = +oo ) ) |
|
| 27 | 22 5 26 | sylancl | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e C = -e +oo <-> C = +oo ) ) |
| 28 | 27 | necon3bid | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e C =/= -e +oo <-> C =/= +oo ) ) |
| 29 | 25 28 | mpbird | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C =/= -e +oo ) |
| 30 | 29 11 | neeqtrd | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e C =/= -oo ) |
| 31 | xaddass | |- ( ( ( -e A e. RR* /\ -e A =/= -oo ) /\ ( -e B e. RR* /\ -e B =/= -oo ) /\ ( -e C e. RR* /\ -e C =/= -oo ) ) -> ( ( -e A +e -e B ) +e -e C ) = ( -e A +e ( -e B +e -e C ) ) ) |
|
| 32 | 3 12 15 21 24 30 31 | syl222anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( -e A +e -e B ) +e -e C ) = ( -e A +e ( -e B +e -e C ) ) ) |
| 33 | xnegdi | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
|
| 34 | 1 13 33 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 35 | 34 | oveq1d | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( A +e B ) +e -e C ) = ( ( -e A +e -e B ) +e -e C ) ) |
| 36 | xnegdi | |- ( ( B e. RR* /\ C e. RR* ) -> -e ( B +e C ) = ( -e B +e -e C ) ) |
|
| 37 | 13 22 36 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( B +e C ) = ( -e B +e -e C ) ) |
| 38 | 37 | oveq2d | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e A +e -e ( B +e C ) ) = ( -e A +e ( -e B +e -e C ) ) ) |
| 39 | 32 35 38 | 3eqtr4d | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( A +e B ) +e -e C ) = ( -e A +e -e ( B +e C ) ) ) |
| 40 | xaddcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
|
| 41 | 1 13 40 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( A +e B ) e. RR* ) |
| 42 | xnegdi | |- ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> -e ( ( A +e B ) +e C ) = ( -e ( A +e B ) +e -e C ) ) |
|
| 43 | 41 22 42 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( ( A +e B ) +e C ) = ( -e ( A +e B ) +e -e C ) ) |
| 44 | xaddcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
|
| 45 | 13 22 44 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( B +e C ) e. RR* ) |
| 46 | xnegdi | |- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> -e ( A +e ( B +e C ) ) = ( -e A +e -e ( B +e C ) ) ) |
|
| 47 | 1 45 46 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( A +e ( B +e C ) ) = ( -e A +e -e ( B +e C ) ) ) |
| 48 | 39 43 47 | 3eqtr4d | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) ) |
| 49 | xaddcl | |- ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> ( ( A +e B ) +e C ) e. RR* ) |
|
| 50 | 41 22 49 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) e. RR* ) |
| 51 | xaddcl | |- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( A +e ( B +e C ) ) e. RR* ) |
|
| 52 | 1 45 51 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( A +e ( B +e C ) ) e. RR* ) |
| 53 | xneg11 | |- ( ( ( ( A +e B ) +e C ) e. RR* /\ ( A +e ( B +e C ) ) e. RR* ) -> ( -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) <-> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) ) |
|
| 54 | 50 52 53 | syl2anc | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( -e ( ( A +e B ) +e C ) = -e ( A +e ( B +e C ) ) <-> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) ) |
| 55 | 48 54 | mpbid | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) /\ ( C e. RR* /\ C =/= +oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |