This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcixp.b | |- B = ( Base ` D ) |
|
| funcixp.h | |- H = ( Hom ` D ) |
||
| funcixp.j | |- J = ( Hom ` E ) |
||
| funcixp.f | |- ( ph -> F ( D Func E ) G ) |
||
| Assertion | funcixp | |- ( ph -> G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcixp.b | |- B = ( Base ` D ) |
|
| 2 | funcixp.h | |- H = ( Hom ` D ) |
|
| 3 | funcixp.j | |- J = ( Hom ` E ) |
|
| 4 | funcixp.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 6 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 7 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 8 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 9 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 10 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 11 | 4 10 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 12 | funcrcl | |- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 14 | 13 | simpld | |- ( ph -> D e. Cat ) |
| 15 | 13 | simprd | |- ( ph -> E e. Cat ) |
| 16 | 1 5 2 3 6 7 8 9 14 15 | isfunc | |- ( ph -> ( F ( D Func E ) G <-> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 17 | 4 16 | mpbid | |- ( ph -> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) |
| 18 | 17 | simp2d | |- ( ph -> G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) J ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) ) |