This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 30-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkson.v | |- V = ( Vtx ` G ) |
|
| Assertion | wlkson | |- ( ( A e. V /\ B e. V ) -> ( A ( WalksOn ` G ) B ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkson.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | 1vgrex | |- ( A e. V -> G e. _V ) |
| 3 | 2 | adantr | |- ( ( A e. V /\ B e. V ) -> G e. _V ) |
| 4 | simpl | |- ( ( A e. V /\ B e. V ) -> A e. V ) |
|
| 5 | 4 1 | eleqtrdi | |- ( ( A e. V /\ B e. V ) -> A e. ( Vtx ` G ) ) |
| 6 | simpr | |- ( ( A e. V /\ B e. V ) -> B e. V ) |
|
| 7 | 6 1 | eleqtrdi | |- ( ( A e. V /\ B e. V ) -> B e. ( Vtx ` G ) ) |
| 8 | eqeq2 | |- ( a = A -> ( ( p ` 0 ) = a <-> ( p ` 0 ) = A ) ) |
|
| 9 | eqeq2 | |- ( b = B -> ( ( p ` ( # ` f ) ) = b <-> ( p ` ( # ` f ) ) = B ) ) |
|
| 10 | 8 9 | bi2anan9 | |- ( ( a = A /\ b = B ) -> ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) <-> ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) ) ) |
| 11 | biidd | |- ( g = G -> ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) <-> ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) ) ) |
|
| 12 | df-wlkson | |- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |
|
| 13 | eqid | |- ( Vtx ` g ) = ( Vtx ` g ) |
|
| 14 | 3anass | |- ( ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) <-> ( f ( Walks ` g ) p /\ ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) ) ) |
|
| 15 | 14 | biancomi | |- ( ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) <-> ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) /\ f ( Walks ` g ) p ) ) |
| 16 | 15 | opabbii | |- { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } = { <. f , p >. | ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) /\ f ( Walks ` g ) p ) } |
| 17 | 13 13 16 | mpoeq123i | |- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) = ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) /\ f ( Walks ` g ) p ) } ) |
| 18 | 17 | mpteq2i | |- ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) /\ f ( Walks ` g ) p ) } ) ) |
| 19 | 12 18 | eqtri | |- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( ( ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) /\ f ( Walks ` g ) p ) } ) ) |
| 20 | 3 5 7 10 11 19 | mptmpoopabbrd | |- ( ( A e. V /\ B e. V ) -> ( A ( WalksOn ` G ) B ) = { <. f , p >. | ( ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) /\ f ( Walks ` G ) p ) } ) |
| 21 | ancom | |- ( ( ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) /\ f ( Walks ` G ) p ) <-> ( f ( Walks ` G ) p /\ ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) ) ) |
|
| 22 | 3anass | |- ( ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) <-> ( f ( Walks ` G ) p /\ ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) ) ) |
|
| 23 | 21 22 | bitr4i | |- ( ( ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) /\ f ( Walks ` G ) p ) <-> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) ) |
| 24 | 23 | opabbii | |- { <. f , p >. | ( ( ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) /\ f ( Walks ` G ) p ) } = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) } |
| 25 | 20 24 | eqtrdi | |- ( ( A e. V /\ B e. V ) -> ( A ( WalksOn ` G ) B ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) } ) |