This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the collection of walks with particular endpoints (in a hypergraph). The predicate F ( A ( WalksOnG ) B ) P can be read as "The pair <. F , P >. represents a walk from vertex A to vertex B in a graph G ", see also iswlkon . This corresponds to the "x0-x(l)-walks", see Definition in Bollobas p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wlkson | |- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwlkson | |- WalksOn |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | va | |- a |
|
| 4 | cvtx | |- Vtx |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Vtx ` g ) |
| 7 | vb | |- b |
|
| 8 | vf | |- f |
|
| 9 | vp | |- p |
|
| 10 | 8 | cv | |- f |
| 11 | cwlks | |- Walks |
|
| 12 | 5 11 | cfv | |- ( Walks ` g ) |
| 13 | 9 | cv | |- p |
| 14 | 10 13 12 | wbr | |- f ( Walks ` g ) p |
| 15 | cc0 | |- 0 |
|
| 16 | 15 13 | cfv | |- ( p ` 0 ) |
| 17 | 3 | cv | |- a |
| 18 | 16 17 | wceq | |- ( p ` 0 ) = a |
| 19 | chash | |- # |
|
| 20 | 10 19 | cfv | |- ( # ` f ) |
| 21 | 20 13 | cfv | |- ( p ` ( # ` f ) ) |
| 22 | 7 | cv | |- b |
| 23 | 21 22 | wceq | |- ( p ` ( # ` f ) ) = b |
| 24 | 14 18 23 | w3a | |- ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) |
| 25 | 24 8 9 | copab | |- { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } |
| 26 | 3 7 6 6 25 | cmpo | |- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) |
| 27 | 1 2 26 | cmpt | |- ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |
| 28 | 0 27 | wceq | |- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |