This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017) (Revised by AV, 31-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkson.v | |- V = ( Vtx ` G ) |
|
| Assertion | iswlkon | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. U /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkson.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | wlkson | |- ( ( A e. V /\ B e. V ) -> ( A ( WalksOn ` G ) B ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = B ) } ) |
| 3 | fveq1 | |- ( p = P -> ( p ` 0 ) = ( P ` 0 ) ) |
|
| 4 | 3 | adantl | |- ( ( f = F /\ p = P ) -> ( p ` 0 ) = ( P ` 0 ) ) |
| 5 | 4 | eqeq1d | |- ( ( f = F /\ p = P ) -> ( ( p ` 0 ) = A <-> ( P ` 0 ) = A ) ) |
| 6 | simpr | |- ( ( f = F /\ p = P ) -> p = P ) |
|
| 7 | fveq2 | |- ( f = F -> ( # ` f ) = ( # ` F ) ) |
|
| 8 | 7 | adantr | |- ( ( f = F /\ p = P ) -> ( # ` f ) = ( # ` F ) ) |
| 9 | 6 8 | fveq12d | |- ( ( f = F /\ p = P ) -> ( p ` ( # ` f ) ) = ( P ` ( # ` F ) ) ) |
| 10 | 9 | eqeq1d | |- ( ( f = F /\ p = P ) -> ( ( p ` ( # ` f ) ) = B <-> ( P ` ( # ` F ) ) = B ) ) |
| 11 | 2 5 10 | 2rbropap | |- ( ( ( A e. V /\ B e. V ) /\ F e. U /\ P e. Z ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 12 | 11 | 3expb | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. U /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |