This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 30-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkson.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | wlkson | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkson.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | 1vgrex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ V ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 5 | 4 1 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 7 | 6 1 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 8 | eqeq2 | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑝 ‘ 0 ) = 𝑎 ↔ ( 𝑝 ‘ 0 ) = 𝐴 ) ) | |
| 9 | eqeq2 | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ↔ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ) | |
| 10 | 8 9 | bi2anan9 | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ) ) |
| 11 | biidd | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) | |
| 12 | df-wlkson | ⊢ WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) | |
| 13 | eqid | ⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) | |
| 14 | 3anass | ⊢ ( ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) | |
| 15 | 14 | biancomi | ⊢ ( ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ∧ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ) ) |
| 16 | 15 | opabbii | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ∧ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ) } |
| 17 | 13 13 16 | mpoeq123i | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) = ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ∧ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ) } ) |
| 18 | 17 | mpteq2i | ⊢ ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ∧ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ) } ) ) |
| 19 | 12 18 | eqtri | ⊢ WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ∧ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ) } ) ) |
| 20 | 3 5 7 10 11 19 | mptmpoopabbrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) } ) |
| 21 | ancom | ⊢ ( ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ) ) | |
| 22 | 3anass | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ) ) | |
| 23 | 21 22 | bitr4i | ⊢ ( ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ) |
| 24 | 23 | opabbii | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) } |
| 25 | 20 24 | eqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) } ) |