This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of F at any X e. A is G applied to all "previous" values of F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wfr2.1 | |- F = wrecs ( R , A , G ) |
|
| Assertion | wfr2 | |- ( ( ( R We A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfr2.1 | |- F = wrecs ( R , A , G ) |
|
| 2 | 1 | wfr1 | |- ( ( R We A /\ R Se A ) -> F Fn A ) |
| 3 | 2 | fndmd | |- ( ( R We A /\ R Se A ) -> dom F = A ) |
| 4 | 3 | eleq2d | |- ( ( R We A /\ R Se A ) -> ( X e. dom F <-> X e. A ) ) |
| 5 | 4 | biimpar | |- ( ( ( R We A /\ R Se A ) /\ X e. A ) -> X e. dom F ) |
| 6 | 1 | wfr2a | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
| 7 | 5 6 | syldan | |- ( ( ( R We A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |