This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Well-ordered recursion
wfr2
Metamath Proof Explorer
Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show
that the value of F at any X e. A is G applied to all
"previous" values of F . (Contributed by Scott Fenton , 18-Apr-2011) (Revised by Mario Carneiro , 26-Jun-2015)
Ref
Expression
Hypothesis
wfr2.1
⊢ F = wrecs ⁡ R A G
Assertion
wfr2
⊢ R We A ∧ R Se A ∧ X ∈ A → F ⁡ X = G ⁡ F ↾ Pred R A X
Proof
Step
Hyp
Ref
Expression
1
wfr2.1
⊢ F = wrecs ⁡ R A G
2
1
wfr1
⊢ R We A ∧ R Se A → F Fn A
3
2
fndmd
⊢ R We A ∧ R Se A → dom ⁡ F = A
4
3
eleq2d
⊢ R We A ∧ R Se A → X ∈ dom ⁡ F ↔ X ∈ A
5
4
biimpar
⊢ R We A ∧ R Se A ∧ X ∈ A → X ∈ dom ⁡ F
6
1
wfr2a
⊢ R We A ∧ R Se A ∧ X ∈ dom ⁡ F → F ⁡ X = G ⁡ F ↾ Pred R A X
7
5 6
syldan
⊢ R We A ∧ R Se A ∧ X ∈ A → F ⁡ X = G ⁡ F ↾ Pred R A X