This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak version of wfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020) (Proof shortened by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wfrfun.1 | |- F = wrecs ( R , A , G ) |
|
| Assertion | wfr2a | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfrfun.1 | |- F = wrecs ( R , A , G ) |
|
| 2 | wefr | |- ( R We A -> R Fr A ) |
|
| 3 | 2 | adantr | |- ( ( R We A /\ R Se A ) -> R Fr A ) |
| 4 | weso | |- ( R We A -> R Or A ) |
|
| 5 | sopo | |- ( R Or A -> R Po A ) |
|
| 6 | 4 5 | syl | |- ( R We A -> R Po A ) |
| 7 | 6 | adantr | |- ( ( R We A /\ R Se A ) -> R Po A ) |
| 8 | simpr | |- ( ( R We A /\ R Se A ) -> R Se A ) |
|
| 9 | 3 7 8 | 3jca | |- ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) ) |
| 10 | df-wrecs | |- wrecs ( R , A , G ) = frecs ( R , A , ( G o. 2nd ) ) |
|
| 11 | 1 10 | eqtri | |- F = frecs ( R , A , ( G o. 2nd ) ) |
| 12 | 11 | fpr2a | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) ) |
| 13 | 9 12 | sylan | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) ) |
| 14 | simpr | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> X e. dom F ) |
|
| 15 | 1 | wfrresex | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |
| 16 | 14 15 | opco2 | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
| 17 | 13 16 | eqtrd | |- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |