This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The principle of Well-Ordered Recursion, part 3 of 3. Finally, we show that F is unique. We do this by showing that any function H with the same properties we proved of F in wfr1 and wfr2 is identical to F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wfr3.3 | |- F = wrecs ( R , A , G ) |
|
| Assertion | wfr3 | |- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfr3.3 | |- F = wrecs ( R , A , G ) |
|
| 2 | simpl | |- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> ( R We A /\ R Se A ) ) |
|
| 3 | 1 | wfr1 | |- ( ( R We A /\ R Se A ) -> F Fn A ) |
| 4 | 1 | wfr2 | |- ( ( ( R We A /\ R Se A ) /\ z e. A ) -> ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) |
| 5 | 4 | ralrimiva | |- ( ( R We A /\ R Se A ) -> A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) |
| 6 | 3 5 | jca | |- ( ( R We A /\ R Se A ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) ) |
| 7 | 6 | adantr | |- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) ) |
| 8 | simpr | |- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) |
|
| 9 | wfr3g | |- ( ( ( R We A /\ R Se A ) /\ ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |
|
| 10 | 2 7 8 9 | syl3anc | |- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |