This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection.EDITORIAL: overlaps dfac8a . (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| dnnumch.a | |- ( ph -> A e. V ) |
||
| dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
||
| Assertion | dnnumch1 | |- ( ph -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| 2 | dnnumch.a | |- ( ph -> A e. V ) |
|
| 3 | dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
|
| 4 | recsval | |- ( x e. On -> ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) ` x ) = ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) ) ) |
|
| 5 | 1 | fveq1i | |- ( F ` x ) = ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) ` x ) |
| 6 | 1 | tfr1 | |- F Fn On |
| 7 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 8 | 6 7 | ax-mp | |- Fun F |
| 9 | vex | |- x e. _V |
|
| 10 | resfunexg | |- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
|
| 11 | 8 9 10 | mp2an | |- ( F |` x ) e. _V |
| 12 | rneq | |- ( w = ( F |` x ) -> ran w = ran ( F |` x ) ) |
|
| 13 | df-ima | |- ( F " x ) = ran ( F |` x ) |
|
| 14 | 12 13 | eqtr4di | |- ( w = ( F |` x ) -> ran w = ( F " x ) ) |
| 15 | 14 | difeq2d | |- ( w = ( F |` x ) -> ( A \ ran w ) = ( A \ ( F " x ) ) ) |
| 16 | 15 | fveq2d | |- ( w = ( F |` x ) -> ( G ` ( A \ ran w ) ) = ( G ` ( A \ ( F " x ) ) ) ) |
| 17 | rneq | |- ( z = w -> ran z = ran w ) |
|
| 18 | 17 | difeq2d | |- ( z = w -> ( A \ ran z ) = ( A \ ran w ) ) |
| 19 | 18 | fveq2d | |- ( z = w -> ( G ` ( A \ ran z ) ) = ( G ` ( A \ ran w ) ) ) |
| 20 | 19 | cbvmptv | |- ( z e. _V |-> ( G ` ( A \ ran z ) ) ) = ( w e. _V |-> ( G ` ( A \ ran w ) ) ) |
| 21 | fvex | |- ( G ` ( A \ ( F " x ) ) ) e. _V |
|
| 22 | 16 20 21 | fvmpt | |- ( ( F |` x ) e. _V -> ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( F |` x ) ) = ( G ` ( A \ ( F " x ) ) ) ) |
| 23 | 11 22 | ax-mp | |- ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( F |` x ) ) = ( G ` ( A \ ( F " x ) ) ) |
| 24 | 1 | reseq1i | |- ( F |` x ) = ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) |
| 25 | 24 | fveq2i | |- ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( F |` x ) ) = ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) ) |
| 26 | 23 25 | eqtr3i | |- ( G ` ( A \ ( F " x ) ) ) = ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) ) |
| 27 | 4 5 26 | 3eqtr4g | |- ( x e. On -> ( F ` x ) = ( G ` ( A \ ( F " x ) ) ) ) |
| 28 | 27 | ad2antlr | |- ( ( ( ph /\ x e. On ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( F ` x ) = ( G ` ( A \ ( F " x ) ) ) ) |
| 29 | difss | |- ( A \ ( F " x ) ) C_ A |
|
| 30 | elpw2g | |- ( A e. V -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) |
|
| 31 | 2 30 | syl | |- ( ph -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) |
| 32 | 29 31 | mpbiri | |- ( ph -> ( A \ ( F " x ) ) e. ~P A ) |
| 33 | neeq1 | |- ( y = ( A \ ( F " x ) ) -> ( y =/= (/) <-> ( A \ ( F " x ) ) =/= (/) ) ) |
|
| 34 | fveq2 | |- ( y = ( A \ ( F " x ) ) -> ( G ` y ) = ( G ` ( A \ ( F " x ) ) ) ) |
|
| 35 | id | |- ( y = ( A \ ( F " x ) ) -> y = ( A \ ( F " x ) ) ) |
|
| 36 | 34 35 | eleq12d | |- ( y = ( A \ ( F " x ) ) -> ( ( G ` y ) e. y <-> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 37 | 33 36 | imbi12d | |- ( y = ( A \ ( F " x ) ) -> ( ( y =/= (/) -> ( G ` y ) e. y ) <-> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 38 | 37 | rspcva | |- ( ( ( A \ ( F " x ) ) e. ~P A /\ A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 39 | 32 3 38 | syl2anc | |- ( ph -> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ x e. On ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 41 | 40 | imp | |- ( ( ( ph /\ x e. On ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) |
| 42 | 28 41 | eqeltrd | |- ( ( ( ph /\ x e. On ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( F ` x ) e. ( A \ ( F " x ) ) ) |
| 43 | 42 | ex | |- ( ( ph /\ x e. On ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 44 | 43 | ralrimiva | |- ( ph -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 45 | 6 | tz7.49c | |- ( ( A e. V /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| 46 | 2 44 45 | syl2anc | |- ( ph -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |