This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020) (Revised by AV, 8-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edg0iedg0.i | |- I = ( iEdg ` G ) |
|
| edg0iedg0.e | |- E = ( Edg ` G ) |
||
| Assertion | edg0iedg0 | |- ( Fun I -> ( E = (/) <-> I = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edg0iedg0.i | |- I = ( iEdg ` G ) |
|
| 2 | edg0iedg0.e | |- E = ( Edg ` G ) |
|
| 3 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 4 | 2 3 | eqtri | |- E = ran ( iEdg ` G ) |
| 5 | 4 | eqeq1i | |- ( E = (/) <-> ran ( iEdg ` G ) = (/) ) |
| 6 | 5 | a1i | |- ( Fun I -> ( E = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
| 7 | 1 | eqcomi | |- ( iEdg ` G ) = I |
| 8 | 7 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 9 | 8 | eqeq1i | |- ( ran ( iEdg ` G ) = (/) <-> ran I = (/) ) |
| 10 | 9 | a1i | |- ( Fun I -> ( ran ( iEdg ` G ) = (/) <-> ran I = (/) ) ) |
| 11 | funrel | |- ( Fun I -> Rel I ) |
|
| 12 | relrn0 | |- ( Rel I -> ( I = (/) <-> ran I = (/) ) ) |
|
| 13 | 12 | bicomd | |- ( Rel I -> ( ran I = (/) <-> I = (/) ) ) |
| 14 | 11 13 | syl | |- ( Fun I -> ( ran I = (/) <-> I = (/) ) ) |
| 15 | 6 10 14 | 3bitrd | |- ( Fun I -> ( E = (/) <-> I = (/) ) ) |