This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vdumgr0.v | |- V = ( Vtx ` G ) |
|
| Assertion | vdumgr0 | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( ( VtxDeg ` G ) ` N ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdumgr0.v | |- V = ( Vtx ` G ) |
|
| 2 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> G e. UHGraph ) |
| 4 | simp3 | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( # ` V ) = 1 ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 1 5 | umgrislfupgr | |- ( G e. UMGraph <-> ( G e. UPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 7 | 6 | simprbi | |- ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 8 | 7 | 3ad2ant1 | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 9 | 3 4 8 | 3jca | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( G e. UHGraph /\ ( # ` V ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 10 | simp2 | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> N e. V ) |
|
| 11 | eqid | |- { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 12 | 1 5 11 | vtxdlfuhgr1v | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( N e. V -> ( ( VtxDeg ` G ) ` N ) = 0 ) ) |
| 13 | 9 10 12 | sylc | |- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( ( VtxDeg ` G ) ` N ) = 0 ) |