This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfgrval.v | |- V = ( Vtx ` G ) |
|
| vtxdlfgrval.i | |- I = ( iEdg ` G ) |
||
| vtxdlfgrval.a | |- A = dom I |
||
| vtxdlfgrval.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdumgrval | |- ( ( G e. UMGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdlfgrval.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdlfgrval.a | |- A = dom I |
|
| 4 | vtxdlfgrval.d | |- D = ( VtxDeg ` G ) |
|
| 5 | 1 2 | umgrislfupgr | |- ( G e. UMGraph <-> ( G e. UPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 6 | 3 | eqcomi | |- dom I = A |
| 7 | 6 | feq2i | |- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 8 | 7 | biimpi | |- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 9 | 5 8 | simplbiim | |- ( G e. UMGraph -> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 10 | 1 2 3 4 | vtxdlfgrval | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
| 11 | 9 10 | sylan | |- ( ( G e. UMGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |