This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019) (Revised by AV, 26-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rab2ex.1 | |- B = { y e. A | ps } |
|
| rab2ex.2 | |- A e. _V |
||
| Assertion | rab2ex | |- { x e. B | ph } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rab2ex.1 | |- B = { y e. A | ps } |
|
| 2 | rab2ex.2 | |- A e. _V |
|
| 3 | 1 2 | rabex2 | |- B e. _V |
| 4 | 3 | rabex | |- { x e. B | ph } e. _V |