This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion in terms of substitutions. Version of opelopabsb with set variables. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vopelopabsb | |- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( <. z , w >. = <. x , y >. <-> <. x , y >. = <. z , w >. ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opth | |- ( <. x , y >. = <. z , w >. <-> ( x = z /\ y = w ) ) |
| 5 | 1 4 | bitri | |- ( <. z , w >. = <. x , y >. <-> ( x = z /\ y = w ) ) |
| 6 | 5 | anbi1i | |- ( ( <. z , w >. = <. x , y >. /\ ph ) <-> ( ( x = z /\ y = w ) /\ ph ) ) |
| 7 | 6 | 2exbii | |- ( E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |
| 8 | elopab | |- ( <. z , w >. e. { <. x , y >. | ph } <-> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) |
|
| 9 | 2sb5 | |- ( [ z / x ] [ w / y ] ph <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |
|
| 10 | 7 8 9 | 3bitr4i | |- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |