This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002) (Revised by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelopabsb | |- ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | opnzi | |- <. x , y >. =/= (/) |
| 4 | simpl | |- ( ( (/) = <. x , y >. /\ ph ) -> (/) = <. x , y >. ) |
|
| 5 | 4 | eqcomd | |- ( ( (/) = <. x , y >. /\ ph ) -> <. x , y >. = (/) ) |
| 6 | 5 | necon3ai | |- ( <. x , y >. =/= (/) -> -. ( (/) = <. x , y >. /\ ph ) ) |
| 7 | 3 6 | ax-mp | |- -. ( (/) = <. x , y >. /\ ph ) |
| 8 | 7 | nex | |- -. E. y ( (/) = <. x , y >. /\ ph ) |
| 9 | 8 | nex | |- -. E. x E. y ( (/) = <. x , y >. /\ ph ) |
| 10 | elopab | |- ( (/) e. { <. x , y >. | ph } <-> E. x E. y ( (/) = <. x , y >. /\ ph ) ) |
|
| 11 | 9 10 | mtbir | |- -. (/) e. { <. x , y >. | ph } |
| 12 | eleq1 | |- ( <. A , B >. = (/) -> ( <. A , B >. e. { <. x , y >. | ph } <-> (/) e. { <. x , y >. | ph } ) ) |
|
| 13 | 11 12 | mtbiri | |- ( <. A , B >. = (/) -> -. <. A , B >. e. { <. x , y >. | ph } ) |
| 14 | 13 | necon2ai | |- ( <. A , B >. e. { <. x , y >. | ph } -> <. A , B >. =/= (/) ) |
| 15 | opnz | |- ( <. A , B >. =/= (/) <-> ( A e. _V /\ B e. _V ) ) |
|
| 16 | 14 15 | sylib | |- ( <. A , B >. e. { <. x , y >. | ph } -> ( A e. _V /\ B e. _V ) ) |
| 17 | sbcex | |- ( [. A / x ]. [. B / y ]. ph -> A e. _V ) |
|
| 18 | spesbc | |- ( [. A / x ]. [. B / y ]. ph -> E. x [. B / y ]. ph ) |
|
| 19 | sbcex | |- ( [. B / y ]. ph -> B e. _V ) |
|
| 20 | 19 | exlimiv | |- ( E. x [. B / y ]. ph -> B e. _V ) |
| 21 | 18 20 | syl | |- ( [. A / x ]. [. B / y ]. ph -> B e. _V ) |
| 22 | 17 21 | jca | |- ( [. A / x ]. [. B / y ]. ph -> ( A e. _V /\ B e. _V ) ) |
| 23 | opeq1 | |- ( z = A -> <. z , w >. = <. A , w >. ) |
|
| 24 | 23 | eleq1d | |- ( z = A -> ( <. z , w >. e. { <. x , y >. | ph } <-> <. A , w >. e. { <. x , y >. | ph } ) ) |
| 25 | dfsbcq2 | |- ( z = A -> ( [ z / x ] [ w / y ] ph <-> [. A / x ]. [ w / y ] ph ) ) |
|
| 26 | 24 25 | bibi12d | |- ( z = A -> ( ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) <-> ( <. A , w >. e. { <. x , y >. | ph } <-> [. A / x ]. [ w / y ] ph ) ) ) |
| 27 | opeq2 | |- ( w = B -> <. A , w >. = <. A , B >. ) |
|
| 28 | 27 | eleq1d | |- ( w = B -> ( <. A , w >. e. { <. x , y >. | ph } <-> <. A , B >. e. { <. x , y >. | ph } ) ) |
| 29 | dfsbcq2 | |- ( w = B -> ( [ w / y ] ph <-> [. B / y ]. ph ) ) |
|
| 30 | 29 | sbcbidv | |- ( w = B -> ( [. A / x ]. [ w / y ] ph <-> [. A / x ]. [. B / y ]. ph ) ) |
| 31 | 28 30 | bibi12d | |- ( w = B -> ( ( <. A , w >. e. { <. x , y >. | ph } <-> [. A / x ]. [ w / y ] ph ) <-> ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) ) ) |
| 32 | vopelopabsb | |- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |
|
| 33 | 26 31 32 | vtocl2g | |- ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) ) |
| 34 | 16 22 33 | pm5.21nii | |- ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) |