This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uz2mulcl | |- ( ( M e. ( ZZ>= ` 2 ) /\ N e. ( ZZ>= ` 2 ) ) -> ( M x. N ) e. ( ZZ>= ` 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | |- ( M e. ( ZZ>= ` 2 ) -> M e. ZZ ) |
|
| 2 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 3 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. ( ZZ>= ` 2 ) /\ N e. ( ZZ>= ` 2 ) ) -> ( M x. N ) e. ZZ ) |
| 5 | eluz2b1 | |- ( M e. ( ZZ>= ` 2 ) <-> ( M e. ZZ /\ 1 < M ) ) |
|
| 6 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 7 | 6 | anim1i | |- ( ( M e. ZZ /\ 1 < M ) -> ( M e. RR /\ 1 < M ) ) |
| 8 | 5 7 | sylbi | |- ( M e. ( ZZ>= ` 2 ) -> ( M e. RR /\ 1 < M ) ) |
| 9 | eluz2b1 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) ) |
|
| 10 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 11 | 10 | anim1i | |- ( ( N e. ZZ /\ 1 < N ) -> ( N e. RR /\ 1 < N ) ) |
| 12 | 9 11 | sylbi | |- ( N e. ( ZZ>= ` 2 ) -> ( N e. RR /\ 1 < N ) ) |
| 13 | mulgt1 | |- ( ( ( M e. RR /\ N e. RR ) /\ ( 1 < M /\ 1 < N ) ) -> 1 < ( M x. N ) ) |
|
| 14 | 13 | an4s | |- ( ( ( M e. RR /\ 1 < M ) /\ ( N e. RR /\ 1 < N ) ) -> 1 < ( M x. N ) ) |
| 15 | 8 12 14 | syl2an | |- ( ( M e. ( ZZ>= ` 2 ) /\ N e. ( ZZ>= ` 2 ) ) -> 1 < ( M x. N ) ) |
| 16 | eluz2b1 | |- ( ( M x. N ) e. ( ZZ>= ` 2 ) <-> ( ( M x. N ) e. ZZ /\ 1 < ( M x. N ) ) ) |
|
| 17 | 4 15 16 | sylanbrc | |- ( ( M e. ( ZZ>= ` 2 ) /\ N e. ( ZZ>= ` 2 ) ) -> ( M x. N ) e. ( ZZ>= ` 2 ) ) |