This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uz2mulcl | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 · 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℤ ) | |
| 2 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) | |
| 3 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 5 | eluz2b1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) ) | |
| 6 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 7 | 6 | anim1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → ( 𝑀 ∈ ℝ ∧ 1 < 𝑀 ) ) |
| 8 | 5 7 | sylbi | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑀 ∈ ℝ ∧ 1 < 𝑀 ) ) |
| 9 | eluz2b1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) | |
| 10 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 11 | 10 | anim1i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) |
| 12 | 9 11 | sylbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) |
| 13 | mulgt1 | ⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 1 < 𝑀 ∧ 1 < 𝑁 ) ) → 1 < ( 𝑀 · 𝑁 ) ) | |
| 14 | 13 | an4s | ⊢ ( ( ( 𝑀 ∈ ℝ ∧ 1 < 𝑀 ) ∧ ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) → 1 < ( 𝑀 · 𝑁 ) ) |
| 15 | 8 12 14 | syl2an | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < ( 𝑀 · 𝑁 ) ) |
| 16 | eluz2b1 | ⊢ ( ( 𝑀 · 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝑀 · 𝑁 ) ∈ ℤ ∧ 1 < ( 𝑀 · 𝑁 ) ) ) | |
| 17 | 4 15 16 | sylanbrc | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 · 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |