This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coss12d.a | |- ( ph -> A C_ B ) |
|
| coss12d.c | |- ( ph -> C C_ D ) |
||
| Assertion | coss12d | |- ( ph -> ( A o. C ) C_ ( B o. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss12d.a | |- ( ph -> A C_ B ) |
|
| 2 | coss12d.c | |- ( ph -> C C_ D ) |
|
| 3 | 2 | ssbrd | |- ( ph -> ( x C y -> x D y ) ) |
| 4 | 1 | ssbrd | |- ( ph -> ( y A z -> y B z ) ) |
| 5 | 3 4 | anim12d | |- ( ph -> ( ( x C y /\ y A z ) -> ( x D y /\ y B z ) ) ) |
| 6 | 5 | eximdv | |- ( ph -> ( E. y ( x C y /\ y A z ) -> E. y ( x D y /\ y B z ) ) ) |
| 7 | 6 | ssopab2dv | |- ( ph -> { <. x , z >. | E. y ( x C y /\ y A z ) } C_ { <. x , z >. | E. y ( x D y /\ y B z ) } ) |
| 8 | df-co | |- ( A o. C ) = { <. x , z >. | E. y ( x C y /\ y A z ) } |
|
| 9 | df-co | |- ( B o. D ) = { <. x , z >. | E. y ( x D y /\ y B z ) } |
|
| 10 | 7 8 9 | 3sstr4g | |- ( ph -> ( A o. C ) C_ ( B o. D ) ) |