This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of BourbakiTop1 p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uspreg.1 | |- J = ( TopOpen ` W ) |
|
| Assertion | uspreg | |- ( ( W e. UnifSp /\ J e. Haus ) -> J e. Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspreg.1 | |- J = ( TopOpen ` W ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | eqid | |- ( UnifSt ` W ) = ( UnifSt ` W ) |
|
| 4 | 2 3 1 | isusp | |- ( W e. UnifSp <-> ( ( UnifSt ` W ) e. ( UnifOn ` ( Base ` W ) ) /\ J = ( unifTop ` ( UnifSt ` W ) ) ) ) |
| 5 | 4 | simprbi | |- ( W e. UnifSp -> J = ( unifTop ` ( UnifSt ` W ) ) ) |
| 6 | 5 | adantr | |- ( ( W e. UnifSp /\ J e. Haus ) -> J = ( unifTop ` ( UnifSt ` W ) ) ) |
| 7 | 4 | simplbi | |- ( W e. UnifSp -> ( UnifSt ` W ) e. ( UnifOn ` ( Base ` W ) ) ) |
| 8 | simpr | |- ( ( W e. UnifSp /\ J e. Haus ) -> J e. Haus ) |
|
| 9 | 6 8 | eqeltrrd | |- ( ( W e. UnifSp /\ J e. Haus ) -> ( unifTop ` ( UnifSt ` W ) ) e. Haus ) |
| 10 | eqid | |- ( unifTop ` ( UnifSt ` W ) ) = ( unifTop ` ( UnifSt ` W ) ) |
|
| 11 | 10 | utopreg | |- ( ( ( UnifSt ` W ) e. ( UnifOn ` ( Base ` W ) ) /\ ( unifTop ` ( UnifSt ` W ) ) e. Haus ) -> ( unifTop ` ( UnifSt ` W ) ) e. Reg ) |
| 12 | 7 9 11 | syl2an2r | |- ( ( W e. UnifSp /\ J e. Haus ) -> ( unifTop ` ( UnifSt ` W ) ) e. Reg ) |
| 13 | 6 12 | eqeltrd | |- ( ( W e. UnifSp /\ J e. Haus ) -> J e. Reg ) |