This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fdmeu | |- ( ( F : A --> B /\ X e. A ) -> E! y e. B ( F ` X ) = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feu | |- ( ( F : A --> B /\ X e. A ) -> E! y e. B <. X , y >. e. F ) |
|
| 2 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 3 | 2 | anim1i | |- ( ( F : A --> B /\ X e. A ) -> ( F Fn A /\ X e. A ) ) |
| 4 | 3 | adantr | |- ( ( ( F : A --> B /\ X e. A ) /\ y e. B ) -> ( F Fn A /\ X e. A ) ) |
| 5 | fnopfvb | |- ( ( F Fn A /\ X e. A ) -> ( ( F ` X ) = y <-> <. X , y >. e. F ) ) |
|
| 6 | 4 5 | syl | |- ( ( ( F : A --> B /\ X e. A ) /\ y e. B ) -> ( ( F ` X ) = y <-> <. X , y >. e. F ) ) |
| 7 | 6 | reubidva | |- ( ( F : A --> B /\ X e. A ) -> ( E! y e. B ( F ` X ) = y <-> E! y e. B <. X , y >. e. F ) ) |
| 8 | 1 7 | mpbird | |- ( ( F : A --> B /\ X e. A ) -> E! y e. B ( F ` X ) = y ) |