This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsvtx.i | |- I = ( .ef ` ndx ) |
|
| setsvtx.s | |- ( ph -> G Struct X ) |
||
| setsvtx.b | |- ( ph -> ( Base ` ndx ) e. dom G ) |
||
| setsvtx.e | |- ( ph -> E e. W ) |
||
| Assertion | setsiedg | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsvtx.i | |- I = ( .ef ` ndx ) |
|
| 2 | setsvtx.s | |- ( ph -> G Struct X ) |
|
| 3 | setsvtx.b | |- ( ph -> ( Base ` ndx ) e. dom G ) |
|
| 4 | setsvtx.e | |- ( ph -> E e. W ) |
|
| 5 | fvexd | |- ( ph -> ( .ef ` ndx ) e. _V ) |
|
| 6 | 2 5 4 | setsn0fun | |- ( ph -> Fun ( ( G sSet <. ( .ef ` ndx ) , E >. ) \ { (/) } ) ) |
| 7 | 2 5 4 3 | basprssdmsets | |- ( ph -> { ( Base ` ndx ) , ( .ef ` ndx ) } C_ dom ( G sSet <. ( .ef ` ndx ) , E >. ) ) |
| 8 | funiedgval | |- ( ( Fun ( ( G sSet <. ( .ef ` ndx ) , E >. ) \ { (/) } ) /\ { ( Base ` ndx ) , ( .ef ` ndx ) } C_ dom ( G sSet <. ( .ef ` ndx ) , E >. ) ) -> ( iEdg ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) = ( .ef ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ph -> ( iEdg ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) = ( .ef ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) ) |
| 10 | 1 | opeq1i | |- <. I , E >. = <. ( .ef ` ndx ) , E >. |
| 11 | 10 | oveq2i | |- ( G sSet <. I , E >. ) = ( G sSet <. ( .ef ` ndx ) , E >. ) |
| 12 | 11 | fveq2i | |- ( iEdg ` ( G sSet <. I , E >. ) ) = ( iEdg ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) |
| 13 | 12 | a1i | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) = ( iEdg ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) ) |
| 14 | structex | |- ( G Struct X -> G e. _V ) |
|
| 15 | 2 14 | syl | |- ( ph -> G e. _V ) |
| 16 | edgfid | |- .ef = Slot ( .ef ` ndx ) |
|
| 17 | 16 | setsid | |- ( ( G e. _V /\ E e. W ) -> E = ( .ef ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) ) |
| 18 | 15 4 17 | syl2anc | |- ( ph -> E = ( .ef ` ( G sSet <. ( .ef ` ndx ) , E >. ) ) ) |
| 19 | 9 13 18 | 3eqtr4d | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) = E ) |